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We wish to consider the impingement of a shock wave on a jet draining into a supersonic 
cocurrent flow. It is necessary to consider this class of flows in the course of solving 
different problems in internal and external aerogaseodynamics, for example, in calculating 
streams in undisturbed flows and jets. The influence of viscosity on the characteristics 
of the stream in front of the section at which the shock wave impinges on the jet is not con- 
sidered, which is entirely justified in an initial segment of the jet when the width of the 
mixing zone is somewhat less than the initial width of the jet and the value of the turbulent 
viscosity in front of the interaction section is one-tenth the corresponding characteristic 
value in the zone of interaction with the shock wave. 

In the present report we analyze the different forms of interaction between a shock 
wave and a jet, including regular interaction, Mach-type reflection in the jet, and totally 
sporadic reflection. It is shown that in the case of Mach interaction, it is impossible 
to calculate the position and dimensions of the Mach leg without also considering the in- 
fluence of viscosity. An approximation method of calculating these types of flows that has 
been previously applied in calculating Mach interaction with a shock wave [i] is proposed. 

1 It is assumed that the Mach numbers in a flow M~ and in a jet Mj satisfy the condi- 
tions M~ > Mj > i= The initial width of the jet h 0 is taken to be the characteristic linear 
dimension, I.e., h 0 = i. The shock wave impinging on the jet is characterized by the slope 
$~ relative to the direction of the current of the undisturbed flow. Different forms of 
interaction are possible depending on the values of the governing parameters of the problem, 
i.e., ~, M~, and Mj (Fig. i). 

A. ComRletely Regular Interaction. Upon interacting with the contact discontinuity 
surface AiBl, the impinging shock wave DA (Fig. la) divides into a refracted shock wave AO 
that propagates into the jet and a fan of rarefaction waves EAE' in the flow. The slope of 
the shock wave AO and of the rarefaction wave AE' and the values of the gas dynamic para- 
meters for these waves are determined from the Rankine-Hugoniot and Prandtl-Mayer equations 
as functions of ~, M~, and Mj. In the case of regular reflection of the shock wave AO from 
the plane of symmetry of the flow 001, a reflected shock wave OB is formed whose slope and 
values of the gas dynamic parameters for this wave may be calculated from the formulas for an 
oblique shock, the well-known values of the parameters in the region AOB, and the condition 
of parallel flow in the region OBO'. Next, in interacting with the boundary of the jet AIB l 
at the point B, the reflected shock wave OB divides into a refracted shock wave BC that pro- 
pagates into the flow and a re-reflected shock wave BO, which propagates into the jet. It is 
no problem to calculate the slopes of these shock waves and the values of the associated gas 
dynamic parameters; this may be done by determining the breakdown of the discontinuity at the 
point B. Here we are using relationships that describe an oblique shock and a rarefaction 
wave, as well as the condition that the upstream and downstream pressure on the tangential 
discontinuity line BB', which is also a part of the boundary of the jet, are equal~ The 
pattern of re-reflection of the shock wave BO' is repeated downstream until the stream in 
the jet and in the flow is again a parallel stream. At a sufficiently great distance from 
the zone of interaction downstream, the parameters of the shock wave BO' assume values that 
correspond approximately to regular reflection of the shock wave DA from the plane AIA for a 
designated Mach number in undisturbed flow M~. The width of the flow is found from a condi- 
tion of mass conservation in the jet. The pattern of the flow obtained as a result of the 
calculation and the corresponding totally regular interaction for $~ = 22 ~ , M~ = 5, and Mj = 
3 is depicted in Fig. la. Pressure is presented for each characteristic zone, adjusted to 
the corresponding value of the pressure in the undisturbed flow. The distinctive feature 
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Fig. 1 

of completely regular interaction is the fact that the gas flow remains supersonic as it 
passes through the system of shocks in the jet and the flow. 

B. Mach Reflection in the Jet. If under the conditions of the flow we have just con- 
sidered, the intensity of the refracted shock wave AO or of any of the re-reflected shock 
waves BO', B'O", etc., is such that regular reflection of any of these shock waves from the 
plane of symmetry OO 1 is impossible, Mach interaction will occur in the jet (Fig. ib, ic). 
For designated values of M~ and Mj, Mach interaction is observed once the angle of the in- 
cident shock 6~ exceeds the critical value ~cr (M~, Mj). Under these conditions a powerful 
shock wave FO (or FO', FO" .... ) arises with subsonic flow behind and a weak reflected wave 
FB (or FB', FB",...). Once the reflected shock wave FB interacts with the contact discontin- 
uity surface, a refracted shock wave BC and a re-reflected shock wave BG are formed. The 
weak shock wave BG interacts with the boundary of the subsonic region of the jet and is re- 
flected from it. Since it is not possible for a pressure discontinuity to form in a neigh- 
borhood of the point G in the subsonic region of the jet, whereas such a discontinuity may 
occur in the transition through the re-reflected shock wave BG in the supersonic region of 
the jet, in order to restore the prior value of the pressure at the point G the shock wave B 
must be reflected from the boundary of the subsonic region by means of a fan of rarefaction 
waves HGH' at the same time that the boundary of the jet ruptures at this point. Moreover, 
the expansion waves HGH' are reflected from the shock wave BC (B'C',...). The variation of 
pressure along the subsonic region of the jet O'FGGzO z is determined by the interaction con- 
ditions with the supersonic current in the jet in the region FBB'BIGIG. All the observations 
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are also valid in the case of sporadic reflection of any of the re-reflected shock waves BO', 
B'O", etc. 

C. Totally Sporadic Reflection. If the intensity of the incident shock wave IDA is so 
great that the schemes of flow described in Part B cannot be realized, the flow is completely 
reconstructed (Fig. Id). A slightly curved strong shock wave FO, nearly in the form of a 
straight line and turned convexly towards direction of the flow (unlike the analogous con- 
cave shock wave in the case of Mach-type reflection in a jet), behind which the flow is sub- 
sonic, is formed in the jet. The position of this wave is not known in advance and must be 
determined in the course of solving the problem. A weak shock wave FA forms in the free- 
stream flow whose slope, together with the slope of the strong shock wave FA at the point F, 
is determined from the Rankine-Hugoniot equations by proceeding on the basis of the condi- 
tions on the contact surface (equality of pressures and equality of slopes of the upstream 
and downstream velocity vectors). In the external flow the shock wave FA interacts with the 
incident shock wave DA at the point a, as a result of which two shock waves AC and AB to- 
gether with a contact discontinuity surface AG form. The slopes of the shock waves AC and 
AB and the value of the gas dynamic parameters at the point A for these shock waves may be 
computed from the Rankine-Hugoniot equations and the conditions on the contact surface AG. 
As in the case described in Part B, upon interaction with the boundary of the jet st the 
point B, the shock wave AB is reflected from it by a fan of rarefaction waves HBH', and this 
is accompanied by a rupture in the shape of the boundary of the subsonic jet at the point B. 

2. Let us consider a method of solving the problem. In parts B and C two schemes of 
interaction between an incident shock wave and a jet were described, both of which may be 
realized at the point of incidence within the framework of a model of inviscous flows. How- 
ever, in attempting to calculate such flow schemes (i.e., determine the position and magni- 
tude of the Mach leg) without going beyond the framework provided in this model, we end up 
at a contradiction. In fact, inasmuch as the slope of the contact surface at the point G 
(in the case of Mach-type reflection in the jet) or at the point B (in the case of totally 
sporadic reflection) is negative and, as we move downstream along this surface, approaches 
zero due to the influence of the plane of symmetry O01, the contact surface GG z (or BB z) 
would have to possess a segment along which it is concave. With supersonic streamlining of 
the concave contact surface there would then occur an increase in pressure, causing a slow- 
down in the subsonic jet. But this is impossible due to the decrease in the cross-sectional 
area of the jet and the mass conservation conditions in the subsonic region of the flow. For 
this problem to be solvable in an approximation to an inviscous gas, it is necessary that the 
rarefaction wave be incident externally to the contact surface GG l in the region where it is 
concave. This would lead to a drop in pressure on the surface that is concave for the super- 
sonic flow as well. It is precisely this circumstance that is observed in the case of Mach 
interaction of shock waves in a re-expanded jet [i]. If the flow is constructed in such a way 
that there is no such rarefaction wave, as is the case in the problems we are considering, 
then, in the formulation of the problem which assumes an inviscous gas, the problem of spo- 
radic reflection in a jet will not have a solution. In order to state the closed formulation 
of the problem in this case it is necessary to take into account the ejective influence of 
the supersonic flow contiguous to the subsonic jet. In other words, in this case calculation 
of the interaction between the supersonic flow and a cocurrent subsonic jet must be carried 
out taking into account the viscosity of the gas or, more specifically, taking into account 
turbulent mixing in the mixing zone. A method of solving these types of problems was de- 
veloped in [2, 3]. Within the framework of this method the stream in the subsonic jet is 
described in a boundary layer approximation, i.e., it is assumed that the transverse compo- 
nent of the pressure gradient ~p/Sy is equal to zero and that the influence of the longitudi- 
nal derivatives of the components of the viscous stress tensor may be ignored. In fact, as 
is shown by the calculation of the parameters behind the shock wave OF for the schemes of flow 
considered over a broad range of variation of the governing parameters, the ratio of the pres- 
sure behind the shock wave OF at the point F to the pressure at the point O (PF/PO) is close 
to unity. For example, in the case of flow in the scheme of part C with Mj = 3 and M~ = 4, 5, 
6, and 7, pF/PO = 0.93, 0.96, 0.98, and 0.99, respectively. This gives us a basis for setting 
8p/By = 0 and for replacing the slightly curved shock wave OF by a forward shock. As for the 
longitudinal derivatives of the tangential stress tensor, their influence will apparently be 
substantial only in a small neighborhood of the point B or the point G. The boundary layer 
equations describing the stream in a subsonic jet and the equations describing the stream in 
a nonviscous supersonic flow are solved by means of marching (i.e., relative to the longi- 
tudinal coordinate) finite-difference methods (Crank-Nicholson [4] or MacCormack [5] type 
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approaches). The characteristics of an inviscous flow in an initial section (which coincides 
with the section connected to the Mach leg FO) are assumed to be known and are determined on 
the basis of the conditions under which the incident shock wave DA is reflected by the plane 
of symmetry OO I and the boundary of the jet upstream of the triple point F. The initial data 
in the subsonic jet are determined from the condition behind the forward shock OF. The solu- 
tions of the inviscous flow and boundary layer equations are combined by means of the general- 
ized equations of viscous-inviscous interaction that were obtained in [2, 3]. These equa- 
tions are a consequence of the threshold nature of the boundary conditions for the transverse 
component of the velocity v, which may be determined from the first-order equation, i.e., the 
continuity equation. They constitute a system of ordinary differential equations relative to 
the pressure in the jet pe(X) and the function y*(x) determining the shape of an effective 
displacement body streamlined by an external inviscous flow: 

1 dpe 
A - -  + q = A ;  (2 1) 

7P~ ~ 

dy* (2 2) 
d--7 = q ;  

dp~ _ 2 dq Op 1 
qd~x P~U~Txx = ~xL (1 +q2). (2.3) 
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v t i s  t u r b u l e n t  v i s c o s i t y ;  5 ( x ) ,  p r o v i s i o n a l  ( a s y m p t o t i c )  bounda ry  o f  t h e  v i s c o u s  r e g i o n ;  
t h e  s u b s c r i p t  "e"  d e n o t e s  t h e  v a l u e s  o f  t h e  p a r a m e t e r s  in  t h e  i n v i s c o u s  f low on t h e  s u r f a c e  
o f  t h e  d i s p l a c e m e n t  body;  t h e  r e m a i n i n g  n o t a t i o n  i s  w e l l  known. E q u a t i o n  ( 2 . 1 )  i s  a c o n s e -  
quence  o f  t h e  c o n t i n u i t y  e q u a t i o n  f o r  t h e  f low in  a s u b s o n i c  j e t ,  w h i l e  Eq. ( 2 . 3 )  i s  a con-  
s e q u e n c e  o f  t h e  b o u n d a r y  c o n d i t i o n  o f  s t a g n a t i o n  f o r  an i n v i s c o u s  f low on t h e  s u r f a c e  o f  t h e  
e f f e c t i v e  body [2 ,  3 ] .  The c o e f f i c i e n t s  A and A a r e  d e t e r m i n e d  by s o l v i n g  t h e  bounda ry  l a y e r  
e q u a t i o n s ,  w h i l e  ~p/~y in  ( 2 . 3 )  a r e  d e t e r m i n e d  by s o l v i n g  t h e  E u l e r  e q u a t i o n s  f o r  an e x t e r n a l  
i n v i s c o u s  f l ow .  In  a s u b s o n i c  j e t  we have  5 < 0 in  t h e  i n i t i a l  s e c t i o n .  As t h e  c u r r e n t  in  
t h e  j e t  s u b s e q u e n t l y  a c c e l e r a t e s  due t o  t h e  e j e c t i v e  i n f l u e n c e  o f  t h e  e x t e r n a l  f l ow ,  5 i n -  
c r e a s e s  and becomes p o s i t i v e ,  p a s s i n g  t h r o u g h  z e r o  in  t h e  s e c t i o n  x = x , .  I n  o r d e r  f o r  dpe /  
dx t o  be bounded in  t h i s  s e c t i o n ,  t h e  c o n d i t i o n  A = q must  a l s o  h o l d ,  i . e . ,  we a r e  d e a l i n g  
w i t h  an o r d i n a r y  s a d d l e - p o i n t  s i n g u l a r i t y  i n h e r e n t  t o  many p rob l ems  r e l a t e d  t o  a c c e l e r a t i o n  
o f  a s u b s o n i c  f low ( f o r  example ,  c u r r e n t s  in  a n e a r  wake [ 5 ] ) .  

A Cauchy p rob lem may be s t a t e d  f o r  Eqs.  ( 2 . 1 ) - ( 2 . 3 ) .  For  t h i s  p u r p o s e  i t  i s  n e c e s s a r y  
to specify the initial values of Pe, q, and y* in the section x = 0 (section of the shock FO). 
The quantities Pe and q = tan 8 F are determined from the Rankine-Hugoniot equations for 
conditions at the triple point F. As for y*(0), we have in the case of currents as given in 
part C, y*(0) = i, and in the case of currents in the scheme of part B, this quantity may be 
determined if the coordinate x of the point B or the point B' is found. The position of the 
forward shock FO in the case of totally sporadic reflection may be determined if the position 
of the point A is given. Thus, in all these types of currents it is necessary to determine 
the coordinate x of the point A or of B and B', which is found from the transit condition of 
a saddle-type singularity in the generalized equations of viscous-inviscous interaction (2.1)- 
(2.3) and is an eigenvalue of the problem. Once the distance x A or x B and x B, of the points 
A or B and B' is known, the position of the shock FO in the plane of flow may be determined 
for designated values of ~=, M=, and Mj. 

3. The results of calculations for Mach-type reflection in a jet and totally sporadic 
reflection are presented in Fig. Ib-ld. The calculations correspond to isoenergetic flow 
(H = Hj = H - const, where H is total enthalpy) in the case of constant and equal values 
of the ratio of the specific heat capacities (7~ = yj = 1.4) and with values of the governing 
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parameters M~ = 5 and Mj = 3. We use the following algebraic model given by Prandtl [7] as 
our model of turbulent viscosity: 

Vr = X / U m ~  x - -  U m i n / ~  , PE = 0,9. 

The proportionality factor • is set equal to 0.27 on the initial segment of the subsonic 
jet and to 0.32 on the main segment [7]. 

The patterns of flow depicted in Fig. ib-ld correspond to distinct values of the slope 
$~ of the incident shock wave DA. If $~ = 26 ~ , the scheme of flow with sporadic reflection 
in a jet of the re-reflected shock wave BF (Fig. ib). With an increase in the slope of the 
shock wave DA to $~ = 29 ~ (Fig. ic), there is sporadic reflection in the jet even in the case 
of the refracted wave AF. A further increase in the intensity of the incident shock wave DA 
leads to reconstruction of the flow and realization of the scheme of part C, i.e., totally 
sporadic reflection (Fig. id, B~ = 290) �9 Interestingly, if we proceed on the basis of the 
relation between the parameters of inviscous flow at the point F with the schemes of parts B 
and C, then, in some range of variation of the angle $~ both interaction schemes are possible 
for the same value of $~, i.e., in this sense the problem loses the property of uniqueness. 
Inasmuch as in an inviscous gas approximation the solution of the interaction problem in the 
presence of a strong shock wave FO does not, as noted earlier, exist, we may arrive at a final 
conclusion concerning the possibility of realizing both flow schemes with the same angle $= 
once we have solved the problem taking into account the influence of viscosity. In certain 
cases, moreover, it is possible to extract a unique solution (with $~ = 32 ~ the solution cor- 
responds to the scheme of Fig. id), while in other cases two solutions are obtained, for ex- 
ample, with $~ = 29 ~ , corresponding to the scheme of Mach=type reflection in the jet (Fig. 
ic), and the scheme of totally sporadic reflection (Fig. id). Apparently, either type of 
interaction may be realized depending on the history of the transition into this state at a 
value $ = ~$ at which both types of interaction are possible. As ~ increases gradually, 
beginning with 8~cr, once the value $ = $~ is reached, flow with an internal Mach leg is 
achieved (Fig. Ic). As $~ decreases from values at which there is only totally sporadic.. 
reflection precisely this scheme of interaction will exist until the initial value $ = ~g 
is reached (Fig. id). Thus, a hysteresis phenomenon is observed. An analogous situation 
arises when a shock wave impinges on the near tail ([6], Chap. 6, Sec. i). 

Figure 2 illustrates the influence of the intensity of an incident shock wave on the 
geometric characteristics of a subsonic segment of the jet, in particular, the distance 
~A = XA/h0 (unbroken curves) and the length of the subsonic region L = L/h 0 (broken curves) 
measured from the section of the strong shock wave FO to the section at which the mean Mach 
number is equal to unity. The calculations were conducted for the scheme of totally sporadic 
reflection with Mj = 3. Curves 1-3 correspond to M= = 5, 6, and 7, respectively. 
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NUMERICAL MODELING OF MACH REFLECTION FOR SOLITARY WAVES 

O. A. Serebrennikova and A. M. Frank UDC 532.59 

It is well known that when a surface solitary wave is incident on a vertical wall, 
located under an angle to the wave front, one can have either regular reflection, when only 
two waves are observed - the incident and the reflected, with their angles and amplitudes 
coinciding, or Mach reflection, when a ternary nonsymmetric configuration is generated. The 
studies [1-5] are devoted to investigating this phenomenon. 

Perroud (see [3, 6]) has conducted experiments on wave reflection of dimensionless 
amplitude a = 0.08-0.38 in a wide range of incidence angles. Perroud observed that regular 
reflection is always realized for incidence angles ~im 45 ~ , while Mach reflection occurs for 
~ 45 ~ . Quantitative characteristics of amplitudes and phases were also determined for wave 
reflection and Mach steps. According to Perroud's data, these parameters depend on the wave 
angle of incidence on the wall and are practically independent of its amplitude. 

For low amplitude waves there exist theoretical results [2] on the resonance interaction 
of three solitary waves, providing, in particular, for t § ~ the asymptotic solution for Mach 
reflection problems. In that study it was obtained that the critical incidence angle ~, dis- 
tinguishing the two types of reflection, depends on the wave amplitude and equals -3~a. The 
parameters of the ternary configuration also depend not only on the wave angle of incidence, 
but also on is amplitude. The predicted wave amplitude at the wall also differs substantially 
from experiment, reaching 4a in the Miles solution at the critical angle of incidence ~i = 3/-J~. 

In [4] this effect is modeled numerically with the use of approximate long-wave equations 
of low amplitude. The calculations were carried out for a = 0.05 and, on the whole, are in 
fair agreement with the Miles theory. 

Specific experiments were carried out [3] so as to verify the theoretical model [2]. 
The reflection was treated of waves of amplitudes a = 0.1-0.15 for different angles. As a 
result of handling measurement data the author has expressed doubts concerning the validity of 
applying the Miles method to this problem. Thus, it must be recognized that a number of prob- 
lems still remain open in this case. 

In the present study we present results of a numerical investigation of a solitary wave 
reflection from a vertical wall for different amplitudes and angles of incidence. As mathe- 
matical models we use two discrete models of an incompressible fluid. The study substantially 
augments and refines the preliminary results, published in [7], of calculations for this prob- 
lem, where a cruder grid was used and a solution was obtained for relatively small values of 
physical time. 

i. Three-Dimensional Discrete Model. The given model is a generalization of the dis- 
crete model [8] to the three-dimensional case. The three-dimensional problem is considered 
of the interaction of a solitary wave over an even bottom with a rigid vertical wall, placed 
at an angle to the front. The z axis is directed upwards, and z = 0 corresponds to a flat un- 
perturbed free surface. In the region ~ occupied by the fluid one introduces the regular 
grid 

~ h = { r : = ( x ~ , y ~ , z ~ ) [ a = ( i , ~ k ) ,  i = l  . . . . .  M, ] = l  . . . . .  N, k =  1 . . . . .  ~ ,  
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